
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-I, No.2, JUNE 1975

The Programming Language Concurrent Pascal

PER BRINCH HANSEN

199

Abstract-The paper describes a new programming language
for structured programming of computer operating systems. It e.lt
tends the sequential programming language Pascal with concurx:~t

programming tools called processes and monitors. Section I eltplains
these concepts informally by means of pictures illustrating a hier
archical design of a simple spooling system. Section II uses the same
enmple to introduce the language notation. The main contribu~on
of Concurrent Pascal is to extend the monitor concept with an .ex
plicit hierarchy Of access' rights to shared data structures that can
be stated in the program text and checked by a compiler.

Index Terms-Abstract data types, access rights, classes, con
current processes, concurrent programming languages, hierarchical
operating systems, monitors, scheduling, structured multiprogram
ming.

1. THE PURPOSE OF CONCURRENT PASCAL

A. Background

SINCE 1972 I have been working on a new programming
.. language for structured programming of computer

operating systems. This language is called Concurrent
Pascal. It extends the sequential programming language
Pascal with concurrent programming tools called processes
and monitors [1J-[3]'

This is an informal description of Concurrent Pascal. It
uses examples, pictures, and words.to bring out the crea
tive aspects of new programming concepts without getting
into their finer details. I plan to define these concepts
precisely and introduce a notation for them in later papers.
This form of presentation may be imprecise from a formal
point of view, but is perhaps more effective from a human
point of view.

B. Processes

We will study concurrent processes inside an operating
system and look at one small problem only: how can large
amounts of data be transmitted from one process to
another by means of a buffer stor.ed on a disk?

Fig. 1 shows tl).is little system and its three components:
a process that produces data, a process that consumes
data, and a disk buffer that connects them.

The circles are system components and the arrows are the
access rights of these components. They show that both
processes can use the buffer (but they do not show that
data flows from the producer to the consumer). This kind
of picture is an access graph.

Manuscript received February 1, 1975. This project is supported
by the National Science Foundation under Grant DC~74-I7~31.

The author is with the Department of InformatIOn SCIence,
California Institute of Technology, Pasadena, Calif. 91125.

Disk buffer

Producer process Consumer process

Fig. 1. Process communication.

Access rights

Private data

Sequential
program

Fig. 2. Process.

The next picture shows a process component in more
detail (Fig. 2).

A process consists of a private data structure and a
sequential program that can operate on the data. One
process cannot operate on the private data of another
process. But concurre~t processes can share certain data
structures (such as a disk buffer). The access rights of a
process mention the shared data it can operate on.

C. Monitors

A disk buffer is a data structure shared by two concur
rent processes. The details of how such a buffer is con
structed are irrelevant to its users. All the processl¥! need
to know is that they can send and receive data through it.
If they try to operate on the buffer in any other way it is

.probably either a programming mistake or an example of
tricky progr~mming. In both cases, one would like a
compiler to detect such misuse of a shared data structure.

To make this possible, we must introduce a language
construct that will enable a programmer to tell a compiler
how' a shared data structure can be used by processes.
This kind of system component is called a monitor. A
monitor can synchronize concurrent processes and trans
mit data between them. It can also control the order in
which competing processes use shared, physical resourc(Js.
Fig. 3 shows a monitor in detail.

A monitor defines a shared data structure and all the
ope~ationsprocesses Cl!>n perform on it. These synchroniz
ing operations are called monitor procedures. A monitor
also defines an initial operation that will be executed when
its data structure is created.

200 IEEE TRANSACTION~ON SOFTWARE ENGINEERING, JUNE 1975

Input prpcess Job process Output process

Access r illhts

Shared data

Synchran i zing
operations

Initial
operati,on ,

Card reader Disk buffers Line printer

Fig. 3. Monitor.

We can define a disk buffer as a monitor. Within this
monitor there will be shared variables that define the
location and length of the buffer on the disk. There will
also be two monitor procedures, send and receive. The
initial operation will make sure that the buffer starts as '
an empty one.

Processes cannot operate directly on shared data. They
can only call monitor procedures that have access to
shared data. A monitor procedure is executed as part of a
calling process (just like any other procedure).

If concurrent processes simultaneously call monitor
procedures that operate on the same shared data these
procedures must be executed strictly one at a time. Other
wise, the results of monitor calls will be unpredictable.
This means that the machine must be able to delay
processes for short periods of time until it is their turn to
execute monitor procedures. We will not be concerned
about how this is done, but will just notice that a monitor
procedure has exclusive access to shared data while it is
being executed.

So the (virtual) machine on which concurrent programs
run will handle short-term scheduling of simultaneous
monitor calls. But thE) programmer must also be able to
delay processes for longer periods of time if their requests
for data and other resources cannot be satisfied immedi
ately. If, for example, a process tries to receive data from
an empty disk buffer it must be delayed until another
process sends more data. .

Concurrent Pascal includes a simple data type, called
a queue, that can be used by monitor procedures to control
medium-term scheduling of processes. A monitor can either
delay a calling process in a queue or continue another
process that is waiting in a queue. It is not important
here to understand how these queues work except for the
following essential rule: a process only has exclusive access
to shared data as long as it continues to execute statements
within a monitor procedure. As soon as a process is delayed
in a queue it loses its exclusive access until another process
calls the same monitor and wakes it up again. (Without
this rule, it would be impossible for other processes to
enter a monitor and let waiting processes continue their

~xecution.)
Although the disk buffer example does not show this

yet, monitor procedures should also be able to call pro
ceduresdefined within other monitors. Otherwise, the
language will not be very useful for hierarchical design.
In the case of a disk buffer, one of these other monitors
could perhaps define simple input/output operations on

Fig. 4. Spooling system.

the disk. So a monitor can also have access rights to other
system components (see Fig. 3).

D. System Design

A process executes a sequential program-it is an active
component. A monitor is just a collection of procedures
that do nothing until they are called by processes-it is a
passive component. But there are strong similarities
between a process and a monitor: both define a data
structure (private or shared) and the meaningful opera
tions on it. The main difference between processes and
monitors is the way they are scheduled for execution.

It seems natural therefore to regard processes and
monitors as abstract data types defined in terms of the
operations one can perform on them. If a compiler can
check that these operations are the only ones carried
out on the data structures, then we may be able to build
very reliable, concurrent programs in which controlled
access to data and physical resources is guaranteed before
these programs are put into operation. We have then to
some extent solved the resource protection problem in the
cheapest possible manner (without hardware mechanisms
and run time overhead).

So we will define processes and monitors as data types
and make it possible to use several instances of the same
component type in a system. We can, for example, use
two disk buffers to build a spooling system with an input
process, a job process, and an output process (Fig. 4). I
will distinguish between definitions and instances of com
ponents by calling them system types and system com~o

nents. Access graphs (such as Fig. 4) will always show
system components (not system types).

Peripheral devices are considered to be monitors imple
mented in hardware. They can only be accessed by a single
procedure io that delays the calling process until an input/
output operation is completed. Interrupts are handled by
the virtual machine on which processes run.

To make the programming language useful for stepwise
system design it should permit the division of a system
type, such as a disk buffer, into smaller system types. One
of these other system types should give a disk buffer
access to the disk. We will call this system type a virtual
disk. It gives a disk buffer the illusion that it has its own
private disk. A virtual disk hides the details of disk input/
output from the rest of the system and makes the disk
look like a data structure (an array of disk pages). The
only operations on this data structure are read and write
a page.

BRINCH HANSEN: PROGRAMMING LANGUAGE CONCURRENT PASCAL 201

9 Virtual disk

6 Disk buffer

Fig. 5. Buller refinement.

Console

Console resource

Virtual consoles

Virtual consoles

Disk

Disk resource

Virtual disks

Fig. 6. Decomposition of virtual disks.

Each virtual disk is only used by a single disk buffer
(Fig. 5). A system component that cannot be called
simultaneously by several other components will be called
a class. A class defines a data structure and the possible
operations on it (just like a monitor). The exclusive
access of class procedures to class variables can be guaran
teed completely at compile time. The virtual ~achine

does not have to schedule simultaneous calls of class
procedures at run time, because such calls cannot occur.
This makes class calls considerably faster than monitor
calls.

The spooling system includes two virtual disks but
only one real disk. So we need a single disk resource monitor
to control the order in which competing processes use the
disk (Fig. 6). This monitor defines two procedures, requ,est
and release access, to be called by a virtual disk before and
after each disk transfer.

It would seem simpler to replace the virtual disks and
the disk resource by a single monitor that has exclusive
access to the disk and does the input/output. This would
certainly guarantee that processes use the disk one at a
time. But this would be done according to the built-in
short-term scheduling policy of monitor calls.

Now to make a virtual machine efficient, one must use
a very simple short-term scheduling rule (such as first
come, first served) [2]. If the disk has a moving access
head this is about the worst possible algorithm one can
use for disk transfers. It is vital that the language make
it possible for the programmer to write a medium-term
scheduling algorithm that will minimize disk head move
ments [3]. The data type queue mentioned earlier makes
it possible to implement arbitrary scheduling rules within
a monitor.

The difficulty is that while a monitor is performing an
input/output operation it is impossible for other processes
to enter the same monitor and join the disk queue. They
will automatically be delayed by the short-term scheduler
and only allowed to enter the monitor one at a time after
each disk transfer. This will, of course, make the attempt

Fig. 7. Decomposition of virtual consoles.

Console

Console resource

Virtual consoles

Disk

Disk resource

Vi rtual disks

Input process Job process Output process

Fig. 8. Hierarchical system structure.

to control disk scheduling within the monitor illusory. To
give the programmer complete control of disk scheduling,
processes should be able to enter th'e disk queue during
disk transfers. Since arrival and service in the disk queueing
system potentially are simultaneous operations they must
be handled by different system components, as shown in
Fig. 6.

If the disk fails persistently during input/outpu~this
should be reported on an operator's console. Fig. 6 shows
two instances of a class type, called a virtual console. They
give the virtual disks the illusion that they have their
own private consoles.

The virtual consoles get exclusive access to a single, real
console by calling a console resource monitor (Fig. 7).
Notice that we now have a standard technique for dealing
with virtual devices.

If we put all these system components together, we get
a complete picture of a simple spooling system (Fig. 8).
Classes, monitors, and processes are marked C, M, and P.

E. Scope Rules

Some years ago I was part of a team that built a multi
programming system in which processes can appear and
disappear dynamically [4]. In practice, this system was
used mostly to set up a fixed configuration of processes,
Dynamic process deletion will certainly complicate the
semantics and implementation of a programming language
considerably. And since it appears to be unnecessary for

202

a large class of real.,time applications, it seems wise to
exclude it altogether. So an operating system written in
Concurrent Pascal will consist of a fixed number of pro"
cesses, monitors, and classes. These components and their
data' structures will exist forever after system initializa
tion. An operating system can, however, be extended by
recompilation. It remains to be., seen whether this restric
tion will simplify or complicate operating system design.
But the poor quality of most existing operating systems·
clearly demonstrates an urgent need for simpler ap
proaches.

In existing programming languages the data structures
of processes, monitors, and classes would be called "global
data." This term would be misleading in Concurrent
Pascal where each data. structure can be accessed by a
single component only. It seems more appropriate to call
them permanent data structures.

I have argued elsewhere that the most dangerous aspect
of concurrent programming is the possibility of time",
dependent programming errors that are impossible to locate
by program testing ("lurking bugs") [2J, [5J, [6]. If we
are going to depend on real-time programming systems
in our daily lives, we must be able to find such obscure
errors before the systems are put into operation.

Fortunately, a compiler can de.tect many of these errors
if processes and monitors are represented by a structured
notation in a high-level programming language. In addi
tion, we must exclude low-level machine features (regis
ters, addresses, and interrupts) from the language and
let a virtual machine control them. If we want real-time
systems to be highly reliable, we must stop programming
them in assembly language. (The use of hardware protec
tion mechanisms is merely an expensive, inadequate way
of making arbitrary mac.\line language 'programs behave
almost as predictably as compiled programs.)

A Concurrent Pascal compiler will check that the private
data of a process only are accessed by that process. It
will also check that the data structure of a class or monitor
only is accessed by its procedures.

FIg. 8 shows that access rights within an operating sys
tem normally are not tree structured. Instead they form
a directed graph. This partly explains why the traditional
scope rules of block-structured languages are inconvenient
for concurrent programming (and for sequential pro
gramming as well). In Concurrent Pascal one can state
the access rights of components in the· program text and
have them checked by a compiler.

Since the execution of a monitor procedure will delay
the execution of further calls of the same monitor, we
must prevent a monitor from calling itself recursively.
Otherwise, processes can become deadlocked. So the com
p~er will check that the access rights of system components

. aie hierarchically ordered (or, if you like, that there are
no cycles in the access graph).

.The hierarchical ordering of system components has
vital consequences for system design and testing [7].

A hierarchical operating system will be tested com-

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JUNE 1975

ponent by component, bottom up (but could, of course, be
conceiv~d top down or by iteration). When an incomplete
operatrng system has been shown to work correctly (by
proof or testing), a compiler can ensure that this part of
the system will continue to work correctly when new
untested program components are added on top of it.
Programming errors within new components cannot cause
old components to fail because old components do not
call new components, and new components only call old
components through well-defined procedures that have
already been tested.

(Strictly speaking, a compiler can only check that
single monitor calls are made correctly; it cannot check

.sequences of monitor calls, for example whether a resource
is always reserved before it is released. So one can only
hope for compile time assurance of partial correctness.)

Several other reasons besides program correctness make
a hierarchical structure attractive:

1) a hierarchical operating system can be studied in a
stepwise manner as a sequence of abstract machines simu
lated by programs [8J;

2) a partial ordering of process interactions permits
one to use mathematical induction to prove certain overall
properties of the system (such as the absence of dead
locks) [2J;

3) efficient resource utilization can be achieved by
ordering the program components according to the speed
of the physical resources they control (with the fastest
resources being controlled at the bottom of the system)
[8J;

4) a hierarchical system designed according to the
previous criteria is often nearly decomposable from an
analytical point of view. This means that. one can develop
stochastic models of its dynamic behavior in a stepwise
manner [9].

F. Final Remarks

It seems most natural to represent a hierarchical system
structure, such as Fig. 8, by a two-dimensional pictur((.
But when we write a concurrent program we must some
how represent these access rules by linear text. This
limitation of written language tends to obscure the sim
plicity of the original structure. That is why I have tried
to explain the purpose of Concurrent Pascal by means of
pictures instead of language notation.

The Class concept is a restricted form of the class con
cept of Simula 67 [10]. Dijkstra suggested the idea of
monitors [8]. The first structured language notation for
monitors was proposed in [2J, and illustrated by examples
in [3]. The queue variables needed by monitors for process
scheduling were suggested in [5J and modified in [3].

The main contribution of Concurrent Pascal is to extend
monitors with explicit .access rights that can be checked
at compile time. Concurrent Pascal has been implemented
at Caltech for the PDP 11/45 computer. Our system
uses sequential Pascal as a job control and user program
ming language.

BRINCH HANSEN: PROGRAMMING LANGUAGE CONCURRENT PASCAL

II. THE USE OF CONCURRENT PASCAL

A. Introduction

In Section I the concepts of Concurrent Pascal were
explained informally by means of pictures of a hierarchical
sp~oling system. I will now use the same example to in
troduce the language notation of Concurrent Pascal. The
presentation is still informal. ~ am neither trying to define
the language precisely nor to develop a working system.
This will be done in other papers. I am just trying to show
the flavor of the language.

B. Processes

We will now program the system components in Fig. 8
one at a time from top to bottom (but we could just as·
well do it bottom up) ..

Although we only need one input process, we may as
well define it as a general system type of which several
copies may exist:

type inputprocess =
process (buffer: diskbuffer) ;
var block: page;
cycle

readcards(block);
buffer. send (block) ;

end

An input process has access to a buffer of type diskbuffer
(to be defined later). The process has a private variable
block of type page. The data type page is declared else
where as an array of characters: .

type page = array (. 1.. 512.) of char

A process type defines a sequentiq,l program-in this
case, an endless cycle that inputs a block from a card
reader and sends it through the buffer to another process.
We will ignore the details of card reader input.

The send operation on the buffer is called as follows
(using the block as a parameter) :

buffer. send (block)

The next component type we will define is a job process:

type jobprocess =
process(input, output: diskbuffer);
var block: page;
cycle

input. receive (block) ;
update (block) ;
output.send(block) ;

end

A job process has access to two disk buffers called input
;and output. It receives blocks from one buffer, updates

"'"them, and sends them through the other buffer. The
details of updating can be ignored here.

Finally, we need an output process that can receive data
from a disk buffer and output them on a line printer:

203

type outputprocess =

process (buffer: diskbuffer) ;
var block: page;
cycle

buffer. receive (block) ;
printlines (block) ;

end

The following shows a declaration of the main system
components:

var bufferl, buffer2: diskbuffer;
reader: inputprocess;
master: jobprocess;
writer: outputprocess;

There is an input process, called the reader, a job process,
called the master, and an output process,called the writer.
Then there are two disk buffers, buffed and buffer2, that
connect them.

Later I will explain how a disk buffer is defined and
initialized. If we assume that the disk buffers already
have been initialized, we can initialize the input process
as follows:

init reader (bufferl)

The init statement allocates space for the private variables
of the·reader process and starts its execution as a sequential
process with access to bufferl.

The access rights of a process to other system com
ponents, such as bufferl, are also called its parameters. A
process can only be initialized once. After initialization,
the parameters and private variables of a process exist
forever. They are called permanent variables.

The init statement .can be used to start concurrent
execution of several processes and define their access
rights. As an example, the statement

init reader (bufferl) , master(buffer1, buffer2),
writer (buffer2)

starts concurrent execution of the reader process (with
access to bufferl), the master process (with access to b;tth
buffers), and the writer process (with access to buffer2).

A process can only access its own parameters and private
variables. The latter are not accessible to other system
components. Compare this with the more liberal scope
rules of block-structured languages in which a program
block can access not only its own parameters and local
variables, but also those declared in outer blocks. In
Concurrent Pascal, all variables accessible to a system
component are declared within its type definition. This
access rule and the init statement make it possible for a
programmer to state access rights explicitly and have
them checked by a compiler. They also make it possible
to study a system type as a self-contained program unit.

Although the programming examples do not show this,
one can also define constants, data types, and procedures
within a process. These objects can only be used within
the process type.

204

C. Monitors

The disk buffer is a monitor type:

type diskbuffer =
monitor (consoleaccess, diskaccess: resource;

base, limit: integer);

var disk: virtualdisk; sender, receiver: queue;
head, tail, length: integer;

procedure entry send(block: page);
begin

if length = limit then delay (sender) ;
disk. write (base + tail, block) ;
tail: = (tail + 1) mod limit;
length: = length.+ 1;
continue (receiver) ;

end;

procedure entry receive (var block: page) ;
begin

if length = 0 then delay(receiver);
disk. read (base + head, block);
head: =. (head + 1) mod limit;
length: = length - 1;
continue (sender) ;

end;

begin "initial statement"
init disk (consoleaccess, diskaccess) ;
head: = 0; tail: = 0; length: = 0;

end

A disk buffer has access to two other components,
consoleaccess and diskaccess, of type resource (to be de
fined later). It also has access to. two integer constants
defining the base address and limit of the buffer on the
disk.

The monitor declares a set of shared variables: the disk
is declared as a variable of type virtualdisk. Two variables
of type queue are used to delay the sender and receiver
processes until the buffer becomes nonfull and nonempty.
Three integers define the relative addresses of the head
and tail elements of the buffer and its current length.

The monitor defines two monitor procedures, send and
receive. They are marked with the word entry to dis
tinguish them from local procedures used within the
monitor (there are none of these in this example).

Receive returns a page to the calling process. If the
buffer is empty, the calling process is delayed in the re
ceiver queue until another process sends a page through
the buffer. The receive procedure will then read and re
move a page from the head of the disk buffer by calling
a read operation defined within the virtual disk type:

disk.read(base + head, block)

Finally, the receive procedure will continue the execution
of a sending process (if the la.tter is waiting in the sender
queue).

Send is similar to receive.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, JUNE 1975

The queuing mechanism will be explained in detail in
the next section. .

The initial statement of a disk buffer initializes its
virtual disk with access to the console and disk resources.
It also sets the buffer length to zero. (Notice, that a disk
buffer does not use its access rights to the console and
disk, but only passes them on to a virtual disk declared
within it.)

The following shows a declaration of two system com
ponents of type resource and two integers defining the
base and limit of a disk buffer:

var consoleaccess, diskaccess: resource;
base, limit: integer;
buffer: diskbuffer;

If we assume that these variables already have been
initialized, we can initialize a disk buffer as follows:

init buffer (consoleaccess, diskaccess, base, limit)

The init statement allocates storage for the parameters
and shared variables of the disk buffer and executes its
initial statement.

A monitor can only be initialized once. Mter initializa
tion, the parameters and shared variables of a monitor
exist forever. They are called permanent variables. The
parameters and local variables of a monitor procedure,
however, exist only while it is being executed. They are
called temporary variables.

A monitor procedure can only access its own temporary
and permanent variables. These variables are not ac
cessible to other system components. Other components
can, however, call procedure entr~es within a monitor.
While a monitor procedure is being executed, it has ex
clusive access to the permanent variables of the monitor. If
concurrent processes try to call procedures within the
same monitor simultaneously, these procedures will be
executed strictly one at a time.

Only monitors and constants can be permanentparam
eters of processes and monitors. This rule ensures that
processes only communicate by means of monitors.

It is possible to define constants, data types, and local
procedures within monitors (and processes). The local
procedures of a system type can only be called within
the system type. To prevent deadlock of monitor calls and
ensure that access rights are hierarchical the following
rules are enforced: a procedure must be declared before
it can be called; procedure definitions cannot be nested
and cannot call themselves; a system type cannot call
its own procedure entries.

The absence of recursion makes it possible for a com
piler to determine the store requirements of all system
components. This and the use of permanent components
make it possible to use fixed store allocation on a computer
that does not support paging.

Since system components are permanent they inust be
declared as permanent variables of other components.

BlUNCH HANSEN: PROGRAMMING LANGUAGE CONCURRENT PASCAL

D. Queues

A monitor pro~edure can delay a calling process for
'any length of time by executing a delay operation on a
queue variable. Only one process at a time can wait in a
queue. When a calling process is delayed by a monitor
procedure' it loses its exclufilive access to the monitor
variables until another process calls the same monitor
and executes a continue operation on the queue in which
the process is waiting.

The continue operation makes the calling process return
from its monitor call. If any process is waiting in the
selected queue, it will immediately resume the execution
of the monitor procedure that delayed it. Mter being
resumed, the process, again has exclusive access to the
permanent variables of the monitor.

Other variants of process queues (called "events" and
"conditions") are proposed in [3J, [5]. They are multi
process ql.leues that use different (but fixed) schedUling
rules. We do not yet know from experience which kind Of
queue will be the most convenient one for operating system
design. A single-process queue. is the simplest tool that
gives the programmer complete control of the scheduling
of individual processes. Later, I will show how multi
process queues can be built from single-process queues.

A queue must be declared as a permanent variable
within a monitor type.

E. Classes

Every disk buffer has its own virtual disk. A virtual
disk is defined as a class type:

type virtualdisk =

class (consoleaccess, diskaccess: re~ource) ;

val' terminal: virtualconsole; peripheral: disk;

procedure entry read (pageno: integer; val' block: page) ;
val' error: boolean;
begin

repeat
diskaccess .request;
peripheral. read (pageno, block, error) ;
diskaccess .release;
if error then terminal. write ('disk failure') ;

until not error;
end;

procedure entry write (pageno: integer; block: page) ;
begin "similar to read" end;

begin "initial statement"
init terminal (consoleaccess), peripheral;

end '

A virtual disk has access to a console resource and a
disk resource. Its permanent variables define a virtual
console and a disk. A process can access its virtual disk
by means of read and write procedures. These procedure
entries rj}quest and release exclUSIve access to the real disk
before and after each block transfer. If the real disk fails,
the virtual disk calls its virtual console to report the error.

205

The initial statement of a virtual disk initializes its virtual
console and the real disk.

Section H.C shows an example of how a virtual disk is
declared and initialized (within a disk buffer) .

A class can only be initialized once. Mter initialization,
its parameters and private variables exist forever. A class
procedure can only /tccess its own temporary and per
manent variables. These cannot be accessed by other
components.

A class is a system component that cannot be called
simUltaneously by several other components. This is
guaranteed by the following rUle: a class must be declared
as a permanent variable within a system type; a class
can be passed as a permanent parameter to another class
(but not to a process or monitor). So a chain of nested
class calls can only be started by a single process or moni
tor. Consequently, it is not necessary to schedule simul
taneous class calls at run time-they cannot occur.

F. Input/Output

The real disk is controlled by a class

type disk = class

with two procedure entries

read (pageno, block, error)
write (pageno, block, error)

The class uses a standard procedure

io (block, param, device)

to transfer a block to or from the disk device. The io
parameter is a record

var param: record
operation: iooperation;
resUlt: ioresUlt;
pageno: integer

end

that defines an input/output operation, its resUlt,' fnd a
page number on the disk. The calling process is delayed
until an io operation has been completed.

A virtual console is also defined as a class

type virtualconsole =
class (access: resource) ;
val' terminal: console;

It can be accessed by read and write operations that are
similar to e&ch other:

procedure entry read (val' text: line) ;
begin ,

access. request;
terminal. read (text) ;
access. release;

end

The real console is controlled by a class that is similar
to the disk class.

206

G. Multiprocess SC,heduling

Access to the console and disk is controlled by two
monitors of type resource. To simplify the presentation, I
will assume that competing processes are served in first
come, first-served order. (A much better disk scheduling
algorithm is defined in [3J. It can be programmed in
Concurrent Pascal as well, hut involves more details
than the present one.)

We will define a multiprocess queue as an array of single
process queues

type multiqueue = array (.0 .. qlength-l.) of queue

where qlength is an upper bound on the number of con
current processes in the system.

A first-come, first-served scheduler is now straight
forward to program:

type resource =
monitor

var free: Boolean; q: multiqueue;
head, tail, length: integer;

procedure entry request;
var arrival: integer;
begin

if free then free: = false else
begin

arrival: = tail;
tail: = (tail + 1) mod qlength;
length: = length + 1;
delay (q(. arrival.)) ;

end;
end;

procedure entry release;
var departure: integer;
begin

if length = 0 then free: = true else
begin

departure: = head;
4ead: = (head + 1) mod qlength;
length: = length - 1;
continue(q(.departure.));

end;
end;

begin "initial statement"
free: = true; length: = 0;
head:= 0; tail: = 0;

end

H. Initial Process

Finally, we will put all these components together into
~ concurrent program. A Concurrent Pascal program con
sists of nested definitions of system types. The outermost
l:lystem type is an anonymous process, called the initial
process. An instance of this process is created during
system loading. It initializes the other system components.

IEEE TRANSACTioNS ON SOFTWARE ENGINEERING, JUNE 1975

The initial process defines system types and instances
of them. It executes statements that initialize these sys
tem components. In our example, the initial process can
be sketched as follows (ignoring the problem of how base
addresses and limits of disk buffers are defined) :

type
resource = monitor- - -end;
console = class - - -end;
virtualconsole =

class (access: resource) ;- - -end;
disk = class - - -end;
virtualdisk =

class (consoleaccess, diskaccess: resource); - - -end;
diskbuffer =

monitor (consoleaccess, diskaccess: resource;
base, limit: integer);- - -end;

inputprocess =
process (buffer: diskbuffer) ;- - -end;

j obprocess =
process(input, output: diskbuffer);- - -end;

outputprocess =
process(buffer: diskbuffer) ;- - -end;

var
consoleaccess, diskaccess: resource;
bufferl, buffer2: diskbuffer;
reader: inputprocess;
master: j obprocess;
writer: outputprocess;

begin
init consoleaccess, diskaccess,

buffer1(consoleaccess, diskaccess, basel, limitl) ,
buffer2 (consoleaccess, diskaccess, base2, limit2),
reader (bufferl) ,
master(bufferl, buffer2),
writer (buffer2) ;

end.

When the execution of a process (such as the initial
process) terminat~s, its private variables continue :Ito
exist. This is necessary because these variables may have
been passed as permanent parameters to other system
components.

ACKNOWLEDGMENT

It is a pleasure to acknowledge the immense value of a
continuous exchange of ideas with C. A. R. Hoare on
structured multiprogramming. I also thank my students
L. Medina and R. Varela for their helpful comments on
this paper. .

REFERENCES
[1] N. Wirth, "The programming language Pascal," Acta In

formatica, vol. 1, no. 1, pp. 35-63, 1971.
[2] P. Brinch Hansen, Operation System Principles. Englewood

Clift's, N. J.: Prentice-Hall, July 1973.
[3] C. A. R. Hoare, "Monitors: An operating system structuring

concept," Commun. Ass. Comput. Mach., vol. 17, pp. 549-557,
Oct. 1974.

[4] P. Brinch Hansen, "The nucleus of a multiprogramming

IEEE TRANSACTIONS ON SOFI'WARE ENGINEERING, VOL. SE-1, NO.2, JUNE 1975 207

system," Commun. Ass. Comput. Mach., vol. 13, pp. 238-250,
Apr. 1970.

[5] --, "Structuretl multiprogramming," Commun. Ass. Comput.
Mach., vol. 15, pp. 574-578, July 1972.

[6] --, "Concurrent programming concepts," Ass. Comput.
Mach. Comput. Rev., vol. 5, pp. 223-245, Dec. 1974.

[7] --, "A programming methodology for operating ,system
design," in 1974 Proc. IFIP Congr. Stockholm, Sweden:
North-Holland, Aug. 1974, pp. 394-397.

[8] E. W. Dijkstra, "Hierarchical'1rdering of sequential processes,"
Acta Informatica, vol. 1, no. 2/pp. 115-138, 1971.

[9] H. A. Simon, "The architecture,of complexity," in Proc. Amer..
Philosophical Society, vol. 106, no. 6, 1962, pp. 468-482.

[10] O~-J. Dahl and C. A. R. Hoare, "Hierarchical_program struc"
tures," in Structured Programming, O.-J. Dahl, E. W. Dijkstra;
and C. A. R. Hoare. New York: Academic, 1972.

Per Brinch Hansen was born in Copenhagen, Denmark, oil Novem
ber 13, 1938. He received the M.S. degree in electronic engineering
from the Technical University of Denmark, Copenhagen, in 1963.

Mterwards he joined the Danish computer
manufacturer, Regnecentralen, as a systems
programmer and designer. In 1967 he became
head of the department at Regnecentralen
which developed the architecture of the RC
4000 computer and its multiprogramming
system. From 1970 to 1972 he visited Car
negie-Mellon University, Pittsburgh, Pa.,
where he wrote the boo){ Operating System
Principles (Englewood Cliffs, N. J., Prentice
Hall, July 1973). This book contains the first

proposal of the monitor concept on which the programming language
Concurrent Pascal is based. In 1972 he became Associate Professor
of Computer Science at the California Institute of Technology,
Pasadena. He has been a consultant to Burroughs Corporation;
Control Data Corporation, Jet Propulsion Laboratory, Philips, and
Variltn Data Machines. His main research interests are computer
architecture and programming methodology.

Dr. Brinch Hansen is a member of the Working Group 2.3 on
Programming Methodology sponsored by the International Feder8i
tion for Information Processing.

On the Problem of Uniform References to Data Structures

CHARLES M. GESCHKE AND JAMES G. MITCHELL

Abstract-The cost of a change to a large software system is
often primarily a function of the size of the system rather than the
complexity of the change. One reason for this is that programs which
access some given data structure must operate on it using notations
which are determined by its exact representation. Thus, changing
how it is implemented may necessitate changes to the programs
which access it. This paper develops a programming language nota
tion and semantic interpretations which allow a program to operate
on a data object in a manner which is dependent only on its logical
or abstract properties and independent of its underlying concrete
representation.

Index Terms-Abstract data types, compilation, data description,
extensible languages, generic functions, Simulll. 67, sparse arrays,
structured values, systems programming language, uniform refer
ences.

INTRODUCTION

I F A programmer needs to represent a table which
p,ssociates a sum of money with a name for all the

checking accounts in some bank branch office, he must

Manuscript received February 1, 1975.
The authors are with the Palo Alto Research Center, Xerox

Corporation, Palo Alto, Calif. 94304.

first decide what operations are germane to an account
table. Adding an amount to someone's account (e.g.,
increase John Smith's account by $5.03), subtracting an
amount from an account (possibly with a check agaiIisi
overdrawing), closing an account (deleting the entry ill
the table for John Smith), and opening a new account
(e.g., making a new entry in the table for Jane Doe
with an initial balance of $0.00) are one possible set.
Once such it set of logical operations on the account

: table are known, the programmer can make decisions on
how to represent one in the computer.

Any specific way of implementing an account table
will have to provide storage and storage management
for the table itself, as well as concrete operations cor
responding to the logical operations on an account table.
To distingUish between the notion of an account table
and the specific way in which it is implemented in the
computer, we will refer to the former as an abstract data
structure (or simply an abstraction) and to the latter as
a representation of it. For instance, representing an account
table as two arrays, one containing strings (the names
associated with the accounts), and the other containing
numbers (the funds in the accounts), would mean that the

ravinder
Stamp

